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Data Performance  in  Burst  Switching When the  Yoice 
Silence  Periods Have a  Hyperexponential  Distribstion 

PETER  O’REILLY AND SAYEED  GHANI 

Abstract-The performance of data in burst switching has been 
rnalyzed  in previous work with a  fluid  approximation  of the data traffic. 
rhis study extends the previous model  to the case where the silence 
interval between talkspurts has  a hyperexponential, rather than an 
exponential, distribution. It is shown that data performance is extremely 
sensitive to the variance of the silence interval, and that,  for.empirical 
talkspurt and silence distributions, this model provides a vast improve- 
ment on models which assume that both types of intervals are exponen- 
tially distributed. 

I. INTRODUCTION 
In  a  performance  analysis of data  traffic  in  burst  switching, 

O’Reilly [ 13, [2], assumed  that  both  the  talkspurt  and  silence 
intervals  in  a  voice  conversation  are  exponentially  distributed. 
This  assumption  of  exponentiality  has  also  been  made by all 
other  analytic  models  of  DSI  systems  encountered  in  the 
literature.  The  assumption  is  generally necessary for  analytic 
tractability.  However,  the  use of a  fluid  approximation in the 
analysis  of  the  data  performance in an integrated  system 
provides not only  accurate  estimates of the  data  performance 
but is computationally  very  fast;  thus,  extension of the  model 
in [l], [2] to  more  complex  speaker  models  is  feasible. 

A conclusion of the  study in [ 11 was  that  a  two-state  Markov 
model for a  single  speaker,  which  implies  approximating  both 
the  talkspurts  and  silence  period  distributions  as  exponential, 
was  inadequate  for  empirical  voice  conversations. A compari- 
son to  empirical  distributions  obtained  for  talkspurts  and 
silences,  such as found by Yatsuzuka [3], shows  that  an 
exponential  approximation  for  a  silence  period  distribution  is 
particularly  inadequate.  Although  the  talkspurt  coefficient of 
variation in [3] is  slightly  less  than one,  making  the  exponen- 
tial  assumption  relatively  easy to  justify,  the coefficient of 
variation of the  silence  distribution is almost  three. 

In  this  paper,  we  develop  a  three-state  model for  the  voice 
process, with a  hyperexponential  distribution  for  the  silence 
interval  length,  such  that  the  first two  moments  of  the  silence 
interval  can  be  matched  with  that of the  Yatsuzuka or any 
other  empirical  silence  distribution. 

The resulting  two-dimensional  voice  process for a  fixed 
number  of  voice  sources is developed  and  analyzed. A fluid- 
flow  approximation  for  the  data  process is then  used to find  the 
data  queue  length  distribution.  Due  to  the  bivariate  nature  of 
the  voice  process,  the  solution  of the  data  queue  length 
distribution  involves  the  solution of a  multidimensional  differ- 
ential  equation  of  size ( S  + 1)(S + 2)/2 where S is  the 
number  of  voice  sources.  Thus,  the  computational  complexity 
is of the  order S 2 ,  whereas  the  exponential  model in [2] has 
complexity  of  the order S .  Although  the  use  of  a  more 
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Fig. 1. Voice process. 
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Fig. 2. Three-state Markov model for a single speaker. 

complex  speaker model necessarily  increases the  complexity, 
the  model  is  nonetheless  computationally  feasible  because  of 
the  fluid  approximation  used  in  the  data  traffic  analysis. 

11. MODEL FORMULATION AND ASSUMPTIONS 
A large  coefficient  of  variation of the  silence  period 

distribution  has  been  obtained in a  number of empirical  studies 
[3], [4], of highly  sensitive  speech  activity  detectors. This  can 
be  explained  intuitively  as  follows. In a  typical  two-way 
conversation,  we  observe  two  types of silences: 

1) Frequent  short  pauses  occurring in speech  when  a 
speaker  momentarily  hesitates or  due  to  the  occurrence of a 
stop  consonant  (Type 1 silence). 

2 )  Much  longer  silences  occurring  when  a  speaker  stops  to 
listen to  the  other party  (Type 2 silence). 

Such  a  voice  process is shown in  Fig. 1 .  We define  a  speech 
burst  as  the  interval  over  which  one  speaker  holds  the 
conversation,  and  an  interspeech  silence  as  that  timespan  when 
the  other  speaker  speaks. As shown  in  the  figure,  a  speech 
burst  itself  consists  of  alternating  talkspurts  and  pauses. 

If  we assume that the  talkspurt,  pause,  and  interspeech 
silence  periods are  each exponentially  distributed  with  param- 
eters p,  X,,  X*, respectively,  then  the  voice  process of a  single 
speaker  can  be  modeled as a  three-state  Markov  chain  as 
shown in Fig. 2 .  If  we  further  assume  that, on the  average, 
speech  bursts  of both parties in a  conversation  are equally  long 
and  that  there  is no “dead”  time between  speakers,  then  the 
probability p that  a  talkspurt  is  followed by a  pause  is  given 
approximately by 

p = (n - l ) / n  

where n is  the  average  number of talkspurts in a  speech  burst. 
Clearly, n is given by 

n=(l/Xz)/(l /p+ l / X * ) .  
Thus, 

p =  1 -X,(l /p+ l / X l ) .  

The  distribution  of  the  combined  pause  and  silence  periods  is 
the  two-stage  hyperexponential  distribution  with  probability 
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density  function 

p X l e - X ~ t - q X 2 e - X 2 ‘ ,  t > O  
where q = 1 - p. The mean  and  variance of this  distribution 
are  given,  respectively, by 

and 

It is  well  known  that the  coefficient  of  variation  of  a 
hyperexponential  is  greater  than 1. Thus,  we  can match  the 
mean  and  variance  of the  hyperexponential  to that of the 
Yatsuzuka or any  other  empirical  silence  distribution by  a 
suitable  choice  of XI and X2. These  values  of XI, X2, and thusp, 
are unique for  a  given  mean and  variance. 

For  the  Yatsuzuka  silence  distribution  the  mean  and 
standard  deviation are  480  and  1379  ms,  respectively.  These 
values are  matched by  a  hyperexponential of pause  and 
interspeech  means 105.6 ms  and  2.712 s ,  respectively.  With 
an  average  talkspurt  length of 284  ms,  these  latter  values  give 
p = 8.8563  (and q = 0.1437). 

The  activity  factor  for  a  single  voice  source p ‘ , defined  as 
the  probability  that  a  voice  source  is in talkspurt,  is  given  by 

where  1/X,  the  effective  average  length of a  silence  period, is 
given  by the weighted sum  of  the  interspeech  silence and  pause 
periods 

Substituting (2) into (1) gives 

p ‘  =(1 + p p / X ,   + q p / h , ) - ’ .  

We  now  develop  a  model ’ for  a  voice  process with S off-hook 
voice sources, to be transmitted  over  a link with a total of (c+ u )  
TDM channels  with c reserved  for  data  and u shared  between 
voice  and  data.  We  assume  that  voice  talkspurts  have 
preemptive  priority  over  data  messages.  This  has  been  shown 
in [2] to  be  a  valid  assumption  for  burst  switching  with  typical 
talkspurt  lengths of 280  ms  and  data  message  lengths of less 
than 20 ms. 

Define A ( t )  as  the  number  of  sources  in  talkspurt  at  time t 
and D(t)  as  the  deterministic  process  (following  the  fluid 
approximation)  approximating  the  number of data  messages in 
the  queue.  The  data  are  assumed  to  arrive at a  rate of 6 
(messageds)  and  to be  serviced  at  a  rate 11 (messageds)  per 
channel. We define  the  channelized  data utilization pd as  the 
ratio 8/11. 

Let B ( t )  be  the  number  of  voice  calls in a  silence  period  (of 
either  Type 1 or Type 2 ) .  Thus, B(t )  = S - A (t) .  If B ( t )  = k, 
then c + max (0 ,  u - ( S  - k ) }  = c + [U - ( S  - k)]+ 
channels  are  available  for  data  transmission, and  thus  the 
service  rate  is { c + [ u - (S - k)] * }v. Let the  difference 
between  the  data  arrival  and  service  rates  be  represented as rk: 

r k = 6 - { c + [ u - ( S - k ) ] + } q  (3) 

and  we let N be  such  that 

rs<rs_,<...<rs_,~O<rs_,-,<...<rs-,. 

Note that since k represents  the  number of sources in silence 
(rather  than in talkspurt),  the  definition of rk in (3)  and  their 
subsequent  sequencing  order  are  both  reversed  from  the 

I The following model closely follows [l], [2] and unless otherwise  stated, 
the assumptions made and notation used are the same. 

Fig. 3 .  Silent-period process. 

corresponding  definition  and  ordering in [ 11. The  parameter N 
has,  however,  the  same  interpretation  as  before. 

111. ANALYSIS OF VOICE PROCESS 

Having  assumed  preemption of data  messages  by  voice,  we 
can  analyze  the  voice  process  independently of the  data  traffic. 
The  silent-period  process  is  defined  as { ( B ( t ) ,  B l ( t ) ,  t > 0} 
where B ( t )  is  the  number  of  voice  calls in silence  period  (of 
either  Type 1 or 2) at  time t ,  and B1 ( t )  is  the  number of Type  1 
only (at t ) ;  therefore,  the  number of Type  2  is B ( t )  - B l ( t ) .  
The  silent-period  process  can  be  modeled  as  a  bivariate  birth- 
death  process,  as’  shown  in  Fig. 3. In  general,  the  transition 
rates  are  given by 

where  we  define q,((k, i), ( k ’ ,  i ‘ ) )  as  the  transition  rate  from 
state (k,  i) to (k’, i’). For  the  boundary  states,  of  course, 
some  of  these  rates will be  zero. Let B(k, i )  represent  the 
equilibrium  distribution of this  process,  i.e., 

O(k, i )  = lim Prob { B(t)  = k,  B l( t)  = i}. 
/-a 

The  equilibrium  distribution  has  product  form  and  can  be 
shown to  be 

From  this,  it  is  easy  to  show  that  the  probability  that k sources 
are  silent, O(k), is given  by 

so that, as  expected,  the  distribution of the  number  of 
talkspurts  is  binomial. 

When  the  number  of  talkspurts  exceeds the, number of 
transmission  channels u ,  the  talkspurts  which  began  when  all 
channels  were  busy  are  “frozen  out,”  and  front-end  clipping 
of  the  newest  talkspurts  takes  place.  Thus,  the  average  cutout, 
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i.e.,  the  average  fraction  of a  talkspurt  lost  due  to  freezeout,  is 
given  by 

In  fact,  Weinstein  has  shown [ 5 ]  that  the  average  cutout  is 
independent of the  talkspurt  and  silence  period  distributions. 
The  maximum  stationary  data utilization pmax, which  is  also 
independent  of  the  talkspurt  and  silence  period  distributions,  is 
given  by 

p,,,=c+v-Sp(l-r#l). 

Iv. ANALYSIS OF DATA PERFORMANCE 

In order  to find  the  equilibrium  distribution  for  the  data 
queue  length  we  use  the  standard  procedure  of  writing  down 
the  forward  equations.  Let p(x ,  k, i ,  t )  denote  the  joint 
probability  of  having  voice in the  state { B(t) = k, B 1  ( t )  = i }  
and x data  messages  queued  at  time t. Consider  two  cases: 

1)  No  talkspurts are being  clipped,  i.e., k' = S - u + 1 ,  . . .  , S .  If  the  voice  state  remains  in  state k over a  small 
interval  of  time ( t ,  t + A f ) ,  then  the  data  queue  changes by an 
amount of rkAt in  that  time  provided  that  the  amount  of  data 
present  at  time t is  greater  than  zero. 

2) One or more  talkspurts  are  being  clipped,  i.e., k = 0, . . . )  s - u .  Now  the  data  queue  increases by an  amount 
rs_"At in the  interval ( t ,  t + At).  

Consequently,  treating x as a continuous  variable,  we  get 
the  following  two  sets  of  forward  equations,  for x > 0, 
describing  the  flow  between  states.  For k = S - u + 1, * . . , 
S - 1 ,  we  get 

p ( x ,  k ,  i, ? + A t )  

=P(X-rkAt, k ,  i, t ) ( l - { ( S - k ) p + + i X 1 + ( k - i ) h Z } A t ]  

+ ~ ( x - r k - ~ A . t ,  k -  1 ,  i- 1 ,  t )  * ( S - k +  1)ppAt 

+ p ( x - ~ k - ~ A t ,  k -  1 ,  i, t )  * ( S - k +  1)qpAt 

+p(x-rk+lAt ,  k +  1 ,  i, t )  - ( k +  1 - i )h,At  

+ ~ ( X - r k + l A t ,  k +  1 ,  i+ 1, t )  (i+ 1)hlAt 

+ o ( A t )  i = O ,  . . e ,  k .  (4) 

For the  states k = 1 ,  - . . , S - u - 1 ,  we  get 

p ( x ,  k ,  i, t + A t )  

= p ( x - r s - , A t , k , i , t ) [ l - { ( S - k ) p + i h l + ( k - i ) X 2 } A t ]  

+p(x - r s -uAt ,  k -  1 ,  i- 1 ,  t )  ( S - k +  1)ppAt 

+p(x-rs- , ,At ,  k -  1 ,  i, t); * ( S - k +  1)qpAt 

+p(x - rS-"At ,  k +  1 ,  i, t )  (k+  1 - i )X2Af 

+p(x-rs - , ,At ,  k +  1 ,  i+ 1 ,  t )  * (i+ l )XIAt  

+ o ( A t )  i = O ,  9 k. ( 5 )  

The  boundary  equations  for k = 0, S - u,  and S are special 
cases  of  (4)  and (5) .  

We now  use  the same  solution  method  as  detailed  in [I] to 
obtain  the  equilibrium  probabilities.  With 

P ~ , ; ( x )  = lim ~ ( x ,  k ,  i, t )  
1 - r n  

and with PL*~(x) the  derivative  with  respect  to x,  then for all 
nonzero rk the  resulting  equations  for k = S - u + 1 ,  * * a ,  

A similar set of  equations is written for k = 1, . . . , S - u - 1 
and for  the  boundary  states k = 0, S - v ,  and S .  Note  that x is 
continuous  and p k , f ( X )  is  valid  only for X > 0. Let ?Tk,i denote 
the probability  of  having x = 0 and  voice  being in state (k, i ) .  
For  the  states k = S - N, . . * ,  S ,  rk,; has  a  nonzero 
probability,  whereas r k , ;  = 0 for k < s - N. 

The  set of equations  for pLJt), k = 0,  . . . , S and i 5 k, 
ca_n be  written  in  matrix form by first  transforming  the 
elements  of  the  two-dimensional  density pk,;(X) into  a  one- 
dimensional  function pj (x) .  We use  a  nonlinear  mapping 
function f, such  that j = f(k, i), which  gives  a  one-to-one 
mapping  between  the  states {(k, i); k = 0, * * a ,  S ;  i = 0, 
. . * ,  k} and {j; j = 1 ,  . . , J }  where J ,  the  number of states 
in the  silent-period  process,  equals ( S  + 1 ) ( S  + 2)/2. Since f 
only  determines  the  ordering  of  the  states in the  matrix, it does 
not  affect  the  solution  of  the  system.  Choosing  an  appropriate f 
makes  the  matrix  less  scattered  and  the  numerical  solution 
more  efficient. 

Thus,  the  set  of  differential  equations may now be written  in 
matrix  form as 

P ' ( x ) =  - A P ( x )  x > o  
where P(x)  is  a  J-column  vector  representing  the  transpose of 
[p l (x)  . . * pJ(x) ]  and A is  a  square  matrix of dimension J .  
Finding  the  strictly  positive  eigenvalues of A ,  the  correspond- 
ing  eigenvectors,  and  using  appropriate  boundary  conditions 
(the  solution  technique  is  described  in [ l ] ) ,  we  can  evaluate  the 
steady-state  probability  that  the  voice  is in state j and  that x 
data  messages are queued  (for j = 1, . . . , J and x > 0). Then 
we  can  find  the  probability  density  function p(x )  of the  data 
queue  length from 

J 
p ( x )  = Pj(X) x >  0. 

j = O  

Subsequently,  we  can  evaluate rj for all j such  that k r  S -  N, 
using  the  boundary  conditions  and pj (x) .  This leads  directly  to 
the  probability r of  the  system  being  empty.  Other  perform- 
ance  measures  directly  follow  from p ( x ) .  

V. PERFORMANCE STUDIES 
The sensitivity of data  performance  to  the  variance of the 

hyperexponentially  distributed  silence  interval  has  been  stud- 
ied for a  number  of  systems.  Fig. 4 shows  the  average  data 
queueing  delay  as  a  function  of  data  utilization  for  systems 
with one speaker ( S  = I ) ,  one  shared  channel (u  = l),  and no 
channels  reserved  for  data (c = 0). Other system  parameters 
are listed  in  the  figure. As the  coefficient of variation  of  the 
silence  distribution is- increased  from 1 (exponential) to  2.87, 
and  then 4.82, the  data  performance  degrades  consistently 
with increasing  variation  in  the  silence  interval  lengths.  From 
these  results  and  similar  results  for  larger  systems,  we 
conclude  that  the  data  performance  is  extremely  sensitive  to 
the  variance of the  silence  interval;  without  a  doubt,  the  same 
is  true  of  its  sensitivity  to  the  variance  of  the  talkspurt  length. 

Fig. 5 shows  similar  results  for  a  larger  system:  eight  shared 
channels, no reserved  channels,  and 13 off-hook  voice 
sources.  Talkspurts  and  silence  intervals  have  an  average 
length,  respectively,  of  284  and 480 ms.  Data  messages  have 
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Fig.  4. Sensitivity of data  performance  to  the coefficient of variation (COV) 
of the hyperexponential voice silence  distribution. 

a h .  average  length of 3 ms.  Results  are  shown  here  for  three 
different  distributions of the  talkspurt  and  silence  intervals: 1) 
both  talkspurts  and  Silences  exponentially  distributed; 2 )  the 
talkspurts  exponentially  distributed  and  the  silences  hyperex- 
ponential  with the  parameters  chosen  to match  the  first two 
moments of the  Yatsuzuka  distribution;  and 3) the Yatsuzuka 
distribution  itself.  The  iatter  results  are  obtained  using  a 
simulation  model of a  burst-switched  link.  (Recall  that in burst 
switching  the  voice  priority  is  not  preemptive.)  We  note that 
the  difference  between the hyperexponential  and  exponential is 
substantial  while  those  based  on  the  empirical  distribution 
match the  hyperexponential  curve  very  well. A similar 
correspondence  between  the  simulation  results  and  results of 
tlle hyperexponential  model  has  been  found  for  systems of 
smaller  and  somewhat  larger  capacity. 

This  agreement  between  the  simulation  and  hyperexponen- 
tial models occurs  despite  the  following  divergences of the 
analytic  model  from  reality: 

the  assumption of an  exponential  distribution  for  the 
talkspurt  distribution, 

the  fact  that  the  actual  silence  interval  distribution is not 
hyperexpcinential, 

6 the  approximations  inherent in the  analytic  model, 
namely,  the  voice  preemption as assumption  and  the fluid 
approximation. 

Clearly,  the  effects of many  of  these  assumptions are not 
very  significant;  also  they  tend,  to  a  certain  extent  at  least,  to 
cancel  each  other  out.  Thus,  it  can  be  concluded  that the 
hyperexponential  assumption  gives  a  very  satisfactory  approx- 
imation  as  far as  average  data  performance  is  concerned. 
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Correction to “Statistics of Rayleigh  Backscatter from a 
Single-Mode Fiber” 

P.  HEALEY 

In (1) of  the  above  paper, I the  delta-function.  operator  was 
inadvertently  omitted.  The  correct  equation  is  given  below. 

h (2) = u(z) exp ( - 2az) pkak6 (z  Z k ) .  

k 

Equation (33) of  the  above  paper1 was  not  labeled; it is  the 
equation  directly  aboke (34). 
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