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A Decomposition Approximation for 
the Analysis of Voice/Data Integration 

Sayeed Ghani and Mischa 

Absmcf- A closed-form  decomposition  approximation 
for finding  the  data  performance  in voicddata queuing 
systems is presented.  The  approximation is based on Courtois’ 
decompositiodaggregation techniques  and is applied to Senet 
hybrid  multiplexing,  movable  boundary  frame  allocation 
schemes.  The  approximation is applied to both  infinite  and  finite 
buffer systems. In the former case the approximation is valid 
only in the underload  region and serves as an upperbound  for 
the  mean  data  queuing  delay.  In  the  finite  buffer  case it is valid 
for the  whole  data  tramc  range  and is shown to improve as 
the  number  of  channels  increase,  and  deteriorates as the  buffer 
size increases. For finite  buffer  systems  upper  and  lower  hounds 
for the  decomposition  approximation  have also been  derived. 
It  is  found  that  the  lower  bound is tight in the  underload  and 
low traffk region  of the overload.  In  these  same  regions  the 
decomposition  approximation  serves as a  tight  upperbound. 

I 
I. INTRODUCTION 

N THE ANALYSIS of integrated voice/data systems it 
is well known that exact solutions are computationally 

intractable for large systems. Hencc, it is of interest to obtain 
approximation techniques for the analysis of such systems. 
This study presents an approximation technique which is 
applicable to such systems if the holding times of the traffic 
are widely different. In voice/data systems with no speech 
interpolation the ratio of voice to data holding times is 
typically of  the order of lo4 [l] .  Similarly for videohoice 
systems this ratio can be large. Thus such integrated systems 
are suitable for a decomposition analysis. 

The voice/data process is generally approximated by a 
two-dimensional Markov chain whose equilibrium stationary 
distribution is desired. The solution technique for such a 
problem falls broadly into two categories, exact and approx- 
imate techniques. Exact techniques include matrix methods 
and  moment generating functions. The latter approach rcquires 
finding thc roots of a polynomial within the unit circle. For 
large problems this poses convergence problems since the roots 
are generally close to one. Also finding roots of a polynomial 
is generally an ill-conditioned problem [2], hence the approach 
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should be avoided. Exact matrix techniques give rise to very 
large matrices since the state space can be very large, and 
hence bccome computationally very expensive. 

Approximation techniques include the fluid-flow  and dif- 
fusion approximations, which have been applied to infinite 
data buffer systems [I], [3]. These approximations are inher- 
ently limited to the heavy traffic regions. In this paper we 
propose an approximate technique based on a decomposition 
technique originally developed by Simon and Ando [ 111. The 
method was later applied by Courtois [4] to nearly completely 
decomposable matrices. The method developed by Courtois is 
essentially a matrix technique, but we show that when applied 
to typical voice/data integration it gives rise to closed form 
solutions. This is a significant advantage over previous exact 
and approximatc methods mentioned above, all of which give 
solutions based on numerical techniques, such as finding roots 
of a polynomial or evaluating the eigenvalues and eigenvectors 
of matrices. 

The decomposition method essentially approximates the 
steady state behavior of such systems by ‘decomposing’ them 
into long and short term behavior. Thus it converts a multidi- 
mensional Markov chain into a hierarchy of groups of states, 
such  that  the interaction between the groups is small compared 
to interaction within groups. Thus in obtaining the probability 
distribution of the system, the short term equilibrium distri- 
bution of a group is approximated by ignoring its interaction 
with other groups. 

In order for the decomposition approximation to be accurate, 
it is necessary that each group of states should achieve 
equilibrium in isolation. In integrated voice/data systems, as 
we shall see later, if infinite size buffers are assumed, then this 
is only true in  the underload region, which we shall define later 
as the region of flow-controlled data traffic. In the overload 
region, the data traffic region beyond the under load region, 
one or more of the subgroups becomes unstable in isolation, 
and hence the decomposition method for infinite buffers fails. 

Thus for infinite data buffers the decomposition approxima- 
tion is proposed as an underload approximation, a region where 
other approximations such as fluid  flow give zero waiting time. 
The importance of the underload region stems from the fact 
that delays in this region are small compared to the overload 
region, where the delay is known to  be proportional to a ,  
the ratio of voice holding time to that of data. Thus for 
flow-controlled systems, this would be the desirable region 
of operation. 

In order for the technique to  be applicable for the whole 
data traffic region we consider finite data buffers, which is of 
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course what real systems have. We show that in this case the 
decomposition approximation is a good approximation for the 
whole data traffic region, and is particularly good at very low 
and vcry high data loads. 

Section I1 presents a description of the voice/data integration 
model  known as the movable boundary scheme or Senet. In 
Section I11 we apply the Courtois decomposition technique to 
Senet, and present a closed form solution for the equilibrium 
stationary distribution and data waiting time. Section 1V 
shows the results of Section 111 applied to larger systems and 
compared to exact and simulation results. In Section V we 
develop a technique for finding bounds on the decomposition 
error. 

11. VOICWDATA INTEGRATION 

Since the early seventy's a great deal of research has been 
undertaken for the development of various architectures for the 
multiplexing of voice and data in  an integrated voice/data net- 
works. One of the proposed architectures for such a switch is 
Senet (slotted envelope network) 151. It is based on the concept 
of  a movable boundary scheme proposed by K. Kummerle of 
IBM Research, Zurich, in 1974 [6].  In a voice/data network 
such a multiplexor would exist at each node of  the network. In 
the switching scheme we present below, the general problem of 
evaluating end to end voiceldata performance is a very difficult 
one. This is due to the dependence of data performance on the 
voice traffic; and due to the node to node interdependence of 
circuit switched voice traffic. Thus it becomes necessary for 
the approximate solutions found for single node problems lo 
have the following properties: that they are easily extendible 
to include more classes of traffic, such as video; and are 
also extendible to multimode problems. While keeping this 
eventual goal in mind, we presently restrict our analysis to 
a single node, with two classes of traffic voice and data. We 
show that the solution to this problem can be expressed quite 
accurately in closed form, and  that the technique used is easily 
extendible to include more classes of traffic. 

A. Senet Model and Analysis 

The Senet frame structure is shown in Fig. 1 .  Time is 
divided into equal sized frames of period T seconds, and each 
frame consists of N TDM slots, each of size b bits. Thus, each 
slot represents a channel with a bit rate of b / T  bitdsecond. 
Senet employs what is known as a movable boundary frame 
allocation, in which N d  channels are reserved for data trans- 
mission and the rest Nu = N - N d  are shared between voice 
and data with voice having preemptive priority over data. Data 
packets preempted by voice are placed back at the head of the 
data queuc. This technique can offer considerable advantage 
over a fixed boundary scheme in which data is limited to l v d  

channels. For the same data traffic load the movable boundary 
scheme gives reduced queuing delays with no reduction in 
voice performance. No good approximation techniques exist, 
however, for determining Senet performance in a closed form 
solution, and  which may  be useful for design purposes. This 
is the purpose of this study. 

Frame Tscc Frame TECC 

1 1 . . . N, N,+l . N 
. .. I l l l l l l l l l l l  

Voice N, Data Nd 

Fig. 1 .  Senet frame  structure. 

The multiplexor is hybrid, that is voice channels are circuit 
switched (with no buffering) whereas data is packet switched 
with a finite buffer. For the sake of simplicity we assume that 
the total number of data packets allowcd in the system, i.e., 
those being served plus those in the buffer, is equal to M.' 
We assume that the frame size is small compared to the packet 
lengths and the duration of a circuit switched call. Voice call 
and packet arrivals are Poisson at average rates of X,, callsls 
and Ad packetds, respectively. Arriving voice calls and data 
packets are transmitted on individual channels at a bit rate 
of b / T .  The holding time of a call and the time required 
to transmit a packet are assumed to be exponential with an 
average of l/pv and 1 / p d  s, respectively. The data and voice 
utilizations, defined as p d  = X d / p d  and pv = X,,/p,, give us 
the average number of channels occupied by voice and data 
traffic, rcspectively. Using these definitions one can in turn 
define two regions of operation of the data traffic [3]. The 
underload region is the one in which the average data traffic, 
given by the data utilization P d ,  is restricted to its reserved 
capacity only. 

Underload region: 0 5 P d  < N d .  (2.1) 

The overload region is thc one in which the data load is large 
enough to require, on the average, voice-dedicated channels. 
For large voice holding times compared to data packet lengths 
this can result in extraordinarily long data queues and hence 
large data queuing delays if not limited by buffer size 131, [7]. 

The maximum data utilization p y  corresponds to the 
data load beyond which infinite data buffer systems become 
unstable. At this point the data load is equal to the average 
number of channels not occupied by the voice. Psv is the 
voice blocking probability. In  much  of the analysis we take 
M to be finite. In some examples we assume infinite buffers. 

Under the assumptions made above of Poisson arrivals and 
exponential service times, and if we also assume that the voice 
and data holding times are large compared to the frame period 
T ,  then the state of the system is given by a continuous-time 
two-dimensional Markov Process (V(t) ,  D(1)) where V ( t )  = 
number of voice calls in the system, and D ( t )  = number of 
data packets in the system. 

' Wc shall  henceforth use the  shorthand  natation >V( N,,, Xd), M to denote 
the movable boundary scheme. Where '2.I is not spccified it i q  taken to be 
infinite. 
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We denote the equilibrium state probabilities by the two j = o  1 2 . . .  N-2 N-1 N . . .  M 

dimensional vector p = [pi,j]. Le., 

pt,, = Pr(V(t) = i, D(t )  = j ) ,  

i = O , l , . . . , N , ,  j = O , l , . . . , M  . (2.3) 

Define q ( i ,  j ;  k ,  I )  as the transition rate from state (i: j )  
to ( k ,  1) .  Using the arrival rate and service time parameters 
defined above, the nonzero transition rates are given by 

q ( i ,  j ; i + l , j ) = A v  i = O , . . . ; N , - l  
q ( i , j ; i - l , j ) = i / ~ ,  i = l , 2 , . . . , N L  , (2.4) 
q ( z , j ; i , j + l ) = A d  j = O : . . . , M - l  

The resulting state transition diagram for this system is 
shown in Fig. 2. The equilibrium probabilities p i , j  must 
satisfy the global balance conditions. These can be written 
in matrix form by  first mapping the two dimensional vector 
p into a  one dimensional vector u = [2)(], by choosing some 
1 : 1 mapping function 

f : ( i ,  j )  --+ 1. (2.5) 

(An example appears in  the next section). Thus, 211 = p i j ,  for 
I = f ( i ,  j ) .  The generator matrix Q = [ Q k ,  11 for the Markov 
process is then formed. The scalar elements Q k , l  of Q are 
given by 

The global balance conditions are then written as 

u Q = O ,  v l  = 1 (2.7) 

where 0 and 1 are the appropriate size vectors of zeros and 
ones. Our goal is now to solve (2.7) for u. Since v is  a vector 
whose size n is given by the number of states in the two 
dimensional Markov chain (Fig. 2), 7~ = (Nu + 1)(M + l) ,  
and Q is a square matrix of size n x n. Hence, we have n linear 
simultaneous equations to solve. Solving these exactly by  say 
Gaussian elimination would take O(n3) arithmetic operations. 
For narrowband T1 links Nv may be about 20, whereas A4 
may be several hundred. For broad-band switching where we 
may have a movable boundary scheme involving say voice, 
data and video the number of states in the state space grows 
as a product of the number of states of each class of traffic. In 
addition if we have multiple nodes, the total state space again 
grows as a product of each individual node state space. 

Hence clearly any sort of exact technique would quickly be- 
come computationally too expensive. Even numerical iterative 
techniques would have the same problem, besides giving no 
insight into the solution. Thus instead we exploit the structure 
of the generator matrix &. We assume that the ratio of the 
holding timcs, given by the symbol a: is large 

, = o  I 2 . . .  N-2 N-I N .  . M 

V(t)=l, D(O=j 

Fig. 2. Senet state  transition  diagram. 

This immediately indicates that for each voice state i, the data 
states {(i, 0), (2,  I ) ,  . . . , (i, M)}, for i = 0, .  . . ,Nu: may 
achieve equilibrium. In this case the probability of being in 
state (2, j )  is approximately given by 

P i ; j  P(jIi)Pu(i) (2.9) 

where the following shorthand notation is used: p ( j l i )  = 
Pr(D(t) = ,jlV(t) = i ) ,  and p u ( i )  = Pr(V(t) = i). 

The conditional probability p( j1 i )  is easily evaluated in 
closed form and is given by the probability of state j of a 
finite M / M / N  - i / M  queue (where the last M refers to 
the maximum number of data packets allowed in the system). 
Similarly the exact probabilities p v  ( i )  can also be written down 
exactly in closed form, and are given by 

Having written down the decomposed solution following 
intuitive reasons we now ask the question, how good an 
approximation is (2.9)? Can we find error estimates, error 
bounds, and can we improve this  first order approximation? As 
we shall show in this paper the answer to all these questions is 
in the affirmative and lies in showing that the solution (2.9) can 
also be obtained by using Courtois' decomposition/dggregation 
technique. 

We will  first give the Courtois Decomposition approxima- 
tion in its general form in the next section, after which we 
will apply it to Senet. 

111. COUTOIS' DECOMPOSKION APPROXIMATION 
In this section we  briefly summarize some of the results 

of the Courtois Decomposition approximation as described in 
[4]. The Courtois approximation is applicable to the following 
problem: Find the solution row vector v for  a system of linear 
equations of the form 

PIP = u,  vl = 1. (3.1) 
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P is a n x n stochastic matrix. Lct us define matrices I" As we shall see later, the P matrix corresponding to Senet 
and G satisfying the following equations.2 

P=Y"+EC 

systems has this property. For lumpable systems, G = [GIJ]  

P* = diag(P;), I = I ? .  . . ,I%' (3.3) Using the matrix G, the equilibrium state probability vector 
X = [ X I ]  for the aggregate states is given by the solution of 

with P ;  = [p:? 1 row stochastic square matrices defined to  be the linear equations 
of size n ( I )  X n'(I). The elements G ' I ~ ~ ,  of C must each satisfy 

~ C I , J ,  I 5 1. V I .  d and V i :  j .  
X G  = x, x1 = 1. (3.12) 

(3'4) X I  is the probability o f  being in aggregate state 1. For 

The approximate solution z* to v: z* having the form (3.7, 
If an t can  bc found such that lumpable systems, X represents an exact solution. 

0 < c < < l  (3.5) 3.8), is given by 

then P is called near completely decomposable (NCD) [4]. z; = U ) X I .  (3.13) 

c then equals the largest element of the matrix IP ~ P*l, i.e. 
The smallest is achieved by setting max lcI%JJ I = Hence Thus wc have weighted the conditional distribution u* by 

the probability X I  of being in the aggrcgatc statc I .  Courtois 
(3.6) has shown that (3.13) is an o(c) approximation to u 141. 

At  this point we also describe a similar notation used for 
any eigenvector u of P .  Let v be a vector of subvectors V I  

U [ V I .  U2,. ' ' , IJ,y] (3.7) 

where each V I  is a subvector of scalars t j ~ ~ :  

VI = [ V I 1 , .  ' ' ~ ?JIn(J I = 1.. . . , N .  (3.8) 

Each P ;  corresponds to a set of n ( I )  states AI = { I ; ,  i = 
1. . . . , n(1)). We call AI an uggregute sfute. Thus the states 
i = 1.. . , n have been partitioned into I\- aggregate states 
AI,  I = 1 ,  ... . N  each of size n ( I ) ,  such  that transition 
probabilities between the aggregate states are weak compared 
to  those within the aggregate states. Here E represents the 
degree of coupling between the aggregate states. We note 
here that (3.2)-(3.6) imply that P* can be constructed in 
an unlimited number of ways. We are merely required to 
distribute the off-diagonal block elements of P over the 
nonzero diagonal block elements of P .  One of these methods 
which  we  term "diagonal folding" will  be discussed later. 

If P is NCD then the Decomposition method approximates 
u by another vector z*, using the following decomposi- 
tiodaggregation stepx3 

Let u* be a vector of the form (3.7, 3.8). First thc solutions 
u; of  the A; equations 

V;P; = UT. = 1: 1 = 1.. 1 ,  N (3.9) 

A. Reduction in Computational Complexity 

In calculating the approximate solution (3.13) we have 
reduced the original problem (3.1) into the solution of N + 1 
smaller problems. N of these given by (3.9) are of size n ( I )  
each, and one of sizc N is given by (3.12). The importance 
of this decomposition lies in that often the solution of these 
smaller problems can be obtained i n  closed form. hence giving 
a closed form approximation to (3.1). This is the case in the 
voice/data integration considered next. 

B. Courtois' Decomposition Applied to Senet 
We stated that dccomposition is applicable to systems whose 

solulion is of the form (3.1) whereas our problem is in the 
form (2.7). Hence, we must first convert the generalor matrix 
Q with solution of the form (2.7) into a transition probability 
matrix P with solution of the form (3.1) such that the state 
probability vector u remains unchanged. This can be done as 
follows. Define 

P = k Q + I  (3.14) 

where k is a scalar constant satisfying 0 < k 5 l/max, IQ,,l. 
and hence P 2 0. Then U P  = k:oQ + V I  = w from (2.7). 
Thus, I' is the desired stochastic transition probability matrix. 

Wc show later in (3.23) that P is NCD with 

are found, either numerically or in closed form. Next  the The exact condition for P to  be NCD,  i.e.,  satisl'ying (3.5). 
aggregate matrix G is formcd. This is an N x N transition would  be for €0, given by (3.13, to satisfy 
matrix for the aggregate states. P is called lumpable if there 
exists a set  of constants ~ I J ,  such that t o  << 1. (3.16) 

Wc can simplify condition (3.16) for typical voiceldata systems 
P I J ~  = k - I J ~ ,  V I ,  .J = l;.. . N (3.10) have 

'The following S i? not to be confused with the OIK used in Section 11. 
'Ilenceforth, we use the notation * to denote the  decnrnposition  approxi- 

mation. 
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then 

1.h I I ,v 

q* 0.1 42 M ON., w, OM 1.0 1,l 

Fig. 3. Discrete tlme probability matrix P for A'(,Vv. .Y<{j. M 

If 

h 

(3.18) 

(3.19) 

Wc note that (3.18) clearly follows from (2.Q and hence (3.19) 
is a direct consequence of (2.8). Thus, (3.18) gives a simpler 
condition than (3.16) for P to  be NCD. 

Now  let  us look at the transition diagram of Q ,  Fig. 2. (3.1 X) 
implies p d N  >> p l ,N ,  . Under average loading conditions, i.e., 
p d  z O(Nd) .  po M O(Nt,). (3.18) also implies Ad >> X,. 
This suggests that the state transition diagram can be naturally 
divided into groups A, with A; = { ( i ,  O ) ,  ( i ,  l), . . . ( i ,  M ) } ,  
for i = 0.. . , N u  such that the interaction b e t ~ e r n  groups 
(order of A,., p,>) is weak compared lo interaction within the 
groups (order of Ad. /sd). 

Thus, i n  order to obtain an  NCD matrix I' having the form 
(3.2)-(3.4) we choose a mapping function f such that the 
elements within a group are mapped such that they are lumped 
together. Thus the following lexicographic mapping is chosen: 
f ( i .  .j) = Mi + j. The resulting P matrix is shown in Fig. 3. 
From our definition of an  NCD matrix (3.2), together with  the 
conditions (3.17) and (3.18), it can now  be seen that P is NCII 
with  thc number of subblocks N being N,; + 1 .  The size of 
each subblock 7 4 1 )  = M + 1. 

Having obtained P in NCD form the Decomposition method 
approximates D in the following DecompositiodAggregation 
stages described in Section 11. 

C. Decomposition 

P is decomposed into groups of irreducible Markov chains 
whose solution is obtained independently of the others. As 
mentioned earlier, there is no unique way of forming P* from 
P .  Alternative methods of "folding" P into P* have been 
investigated. At present we choose "diagonal  folding" which, 
as we shall see. results in a closed fonn solution. 

In diagonal folding, we form P" by the following "pertur- 
bation" of Y. For every row of P ,  collect all the nonzero 
terms outside the diagonal block and  add them to the diagonal 
term. Thus, 

Thc matrix P* is shown in Fig. 4. 
P - P* is easily evaluated to be 

J ,  - p;, J3 

- ( A v l ( r v ,  - I )  + I&)k I = J ,  i = .j 
X ,  k l = J - 1 .  

. .  

I = . J + l ,  i = j  
otherwise 

(3.22) 
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I 
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i '  

\ 

I 

I 
\ 

P; 

Once P* is determined, E and C follow from (3.6) and (3.2). 
Using (3.6) and (3.22) it is easy to show that 

Now 0 < k I l/max, 1Qi.l. maxi IQi; I is the maximum 
rate of leaving a state i, and by inspection of the Q matrix: 
maxi IQiiI 5 + + N p d .  Hence, 

I- 
1 N, - 1 + max ( p u ,  1 )  

Pd+N+p,/cu . 
(3.23) 

Since the matrices P; represent a one dimensional 
birth-death process, the normalized equilibrium probability 
vectors of (3.9) are easily found to be given by 

k=O 1 

These are the conditional solutions p ( j l 1 )  to a finite 
M / M / N  - I / M  queue, precisely as mentioned in Section 11. 

D. Aggregation 

The solution of the decomposed Markov chains is combined 
to approximate the exact solution. Since we have assumed 
that voice calls have preemptive priority over data packets, 
the voice process is independent of the data process. Hence, 
it  is easy to show that P is lumpable (see 3.11). Thus, the 
(N,, + 1) x (N ,  + 1) aggregate matrix G is formed using (3.1 I). 
The matrix G is shown in  Fig. 5. X, the solution to (3.12), 
which represents the marginal distribution of thc number of 
voice calls, is again easily obtained in closed form 

This is precisely the form of p , ( l )  noted in Section 11. 
Hence, the approximate solution z* to w (3.13) is given in 
closed form as 

Thus, we have shown that by choosing diagonal folding we get 
the decomposed solution (2.9). We can now find the relevant 
performance criteria. The waiting time, for example, is found, 
using Little's formula, to be given by 

Here Pi, is the decomposition approximation to the data 
bloclung probability PBD. P i ,  is found by summing the 
probability the data buffer is full over all the voice states, Le., 
P i D  = x;M ~ and pd(1 - P&,j is the data throughput. 
Of course for infinite M, P i D  is zero. The term E * ( D )  
represents the approximate mean number of packets in  the 
system, and is given by 

N . ,  M 

E * ( D )  = ccizf, 
z=oi=o 

(3.28a) 

(3.28b) 

(3.28~) 
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0 1 2 

p u t  1 - [Ae + , r . ) P  Auk 
0 I -Auk A u k  [ 2ptk 1 - ( A u  + 2p.N 

N, - 1 
N% 

Fig. 5 .  G matrix for ,V(,U,, .%-A)- AI. 

Here we have used (3.26), and defined E * ( D J )  = 
E*(DlV( t )  = I ) ,  Le., 

M 

E * ( D I )  E (3.29) 
i = O  

E * ( D l )  can be found by substituting (3.24) in (3.2Y).  After 
some simplification this gives (3.30) shown below. For infinite 
buffer size, i.e., hl --t co, with pd < N - N v ,  E'(D1) reduces 
to (3.31) below. Results using these approximations appear 
in Section IV. 

IV. RESULTS 

We now compare the decomposition results with exact 
and simulation results for various systems. The exact results 
were obtained, unless otherwise specified, by matrix iteration 
methods until sufficient accuracy was achieved in evaluating v.  

We first consider an infinite data buffer system 2(1, 1) using 
the notation N ( N v ,  N d )  introduced in section 2. Fig. 6 shows 
the decomposition results obtained with (3.27), (3.2Xc)  and 
(3.31) for the underload region, along with exact results for 
a = 1.1, 10, IO2, lo3. pv = 0.5 and l/pd = 10 ms are kept 
constant. Hence, l / p v  = 11, IO2, lo3, lo4 ms, respectively, 

2447 

N" - 2 N, - 1 N" 

IO' 

1 00 
O.M 0.20 0.40 0.60 0.80 1 .M 

Data Traffic Utilization. pd 

Fig. 6. Underload packet waiting time: Z(1. 1). 

for the four curves. We note that the data waiting times 
increase as a increases. This is as expected since voice calls 
preempt data packets on the N ,  shared channels and the longer 
the holding time of voice calls the longer these data packets 
are delayed. 

(3.30) 
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Fig. 7. Packet waiting time: 2(1. 1), M = 20. BO, 60 Fig. X. Packet waiting time: 4(,2 2), M = 20, 30, 60 

Since the decomposition approximation assumcs the voice 
holding times are long enough for the data process to achieve 
complete equilibrium in each voice state, it effectively as- 
sumes a + %. We thus find that for infinite buffers the 
decomposition approximation serves as an upper bound. This 
is apparent in Fig. 6. As Q + x the exact curves approach 
the decomposition curves from below. 

For comparison purposes we have plotted the  fixed  hound- 
ary curve which does not allow data packets to use any of the 
W, voice channels. Clearly the movable boundary results are 
superior to those of fixed boundary results. The decomposition 
results are also clearly far tighter an upperbound than the fixcd 
boundary result. 

In the overload region for the infinite data buffer case the 
assumption of packet queue equilibrium in any given voice 
state, required to obtain approximation (2.9) or (3.26), is no 
longer valid. Thus in Fig. 6 as Pd + N - Nv = N d ,  the 
boundary between the underload and overload regions, the 
decomposition approximation is shown going to infinity. The 
exact curve i s  still valid, however, going out of bound only 
at the point p d  = p y  = 1.6666 (this point is not shown in 
Fig. 6). 

We also plot for comparison purposes in Fig. 6 an underload 
approximation proposed in 131. We note that this serves as a 
lower bound, i.e., is approached as a + 1 from above. 

We now consider finite data buffer systems. Fig. 7 shows 
three sets of curves for M = 20, 30, 60. For each  set  we 
plot the decomposition results along with exact curves for 
a = lo2, lo3, lo4. Again pv = 0.5, and 1/pd = 10 
ms. As before, as CY + m, the exact curves approach the 
decomposition curves. 

Figs. 8 and 9 show that the results grow more accurate 
for larger finite data buffer systems, 4(2, 2), 60 and 50(25, 
25), 100. 1/pd = 10 ms for all the ligures. po = 0.7808 
for Fig. 8, which makes the normalized maximum number 
of channels available for data p y / i V d  the same (1.6666) 
as in Figs. 6 and 7. Fig. 8 shows that as we go to larger 
systems, from 2(1, 1) to 4(2, 2) for 1Z.f and a fixed, the 
error in  the approximation decreases. But for the samc number 

0.00 
0.00 1 .00 2.00 3.00 4 .M) 5M)xIO' 

Data  Traffic  Utilization, pd 

Fig. 9. Packet  queue  length 50(25, 25), A4 = 100, a = 100.  

of channels, as M increases, the error in the approximation 
increases. Fig. 9 shows results for a realistic sized system 
with 50 channels. pl: = 17.25 has been chosen as the 
voice utilization to make the voice blocking probability small: 
PBr/ = 1.78%. This gives py = 33.06 channels for data. 
The decomposition results are compared to simulation results 
with 95% confidence interval. Clearly, the approximation is 
very accurate, as expected. For comparison purposes the mean 
delay for a fixed boundary scheme is also plotted. 

V. ERROR BOUNDS 
We had mentioned in Section 111 that the decomposition 

approximation is an O(t) approximation, with a bound on t 

given by (3.15). The constant associated with the error could 
be large, hence this result does not guarantee a small error 
even if t is small. Hence what  we  need  in order to guarantee 
a small error is  a tight error bound. This is what we shall deal 
with here. 
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In  this section we will  use a technique different from 
Courtois' Decomposition approximation described in Sec- 
tion 111, called bounded aggregation, to obtain two new 
approximations, a lower bound  and an upper bound to the 
exact mean queue length. It will be shown that these two 
approximations provide a lower and upper bound to the 
decomposition approximation. Hence they can be used to 
obtain error bounds for the decomposition approximation. The 
bounded aggregation method was used by Courtois in [8] to 
obtain bounds to the equilibrium probability distribution vector 
v .  We  will first obtain bounds to the mean queue length  using 
v as obtained in 181, and  then secondly using  an improved 
method also based on bounded aggregation. It will be shown 
that the second method provides tighter bounds than  the first. 
We first  briefly summarize the relevant results as obtained in 
P I .  

Define B( 1 ,  L)  to be the set of all n x 72 nonnegative 
irreducible matrices B having spectral radius p ( B )  less than 
or equal to 1, and a lower bound n x n matrix L: 

B(1, L )  = { B  E !R:xn: p ( B )  5 1,0 5 L 5 B, 
B irreducible}. (5.1) 

We also require that p ( L )  < 1. 
It is shown in 181 that it is possible to easily calculate a 

polyhedron P that contains the left-positive eigenvector of 
any  matrix L? E B(1, L ) .  Having obtained such a polyhedron, 
it is then possible to bound the left-positive eigenvector of all 
matrices B E B(1, L ) .  We summarize these results briefly  as 
follows. Define  the normalized inverse, Z = CP1(I  - L)- l ;  
where I is the identity matrix and C is a normalization 
diagonal matrix diag (E) = ( I -L)- ' l .  Define the polyhedron 
P as the convex combination of the rows of the matrix 
Z :  P = @"z, p E s;, gT1  = 1 ) .  We now state without 
proof the following theorem from [X]. 

Theorem I :  The positive-left eigenvector of a matrix B E 
B(A, L),  belongs to the polyhedron the vertex of which arc 
the rows of the matrix Z ,  which have indices in  the set 

.7 = { j  = 1, 2;..,n; 3i s.t.B,, > L2,}, if p ( ~ )  = X. 
(5.2) 

The next theorem in [8] gives the two approximations u F f ,  
vHUP to eigenvector v = [vi]; here vinf 5 vi 5 v : ~ ~ ,  for 
i = 1,. . . , n. It states that 

Z k i  are the elements of Z.  In this paper we simplify (5.3a) 
and (5.3b), by using 

(5.4a) 

viup = max(Zk,). (5.4b) 
k € 9  

We have found that this provides an occasionally less tight 
but much more simply calculated bound.4 

We now apply the bounded aggregation method to nearly 
completely decomposable (NCD) systems, discussed previ- 
ously in Section 111. We first describe a method of obtaining 
exact results called exact aggregation as given in [X]. 

Consider a stochastic P matrix of the form given in  (3.2) 
with the lcft eigenvector v of the form (3.7), (3.8). Define a 
stochastic block diagonal matrix P of the form (3.3), Le., 

- vIFII = B I ,  511 = 1 I = 1, . .  . , N  (5.5) 

such  that GI = v I / v I l .  For example, PIJ is a stochastic 
matrix whose left eigenvector is parallel to the exact 
subvector VI. Using the method of exact aggregation described 
briefly in [8], we can decompose the transition probability 
matrix P as follows: 

( 2  E::) 
here EII  and F ~ I  are the matrices of transition probabilities 
between P I Z  and the remaining part of the system G r r .  Thus 
ye   havcPIz  = €'rr+EII(I-Gr~)-'F1~. We define P ~ I  as 
PII  = P Z I   - P I T  = EII ( I  - G I I ) - ' F I I .  From (3.3) we can 
easily see that no row  of E11 or column of PII  is completely 
null. Since P is irreducible ( ~ - G z I ) - '  is nonnegative. Hence 
P l r  is a nonnegative matrix with no zero columns. Thus 
- PII  2 PII .  Since the ~ I Z  are stochastic, p(P11) = 1. Hence, 
Pr1 E B( 1, P I ] ) .  Thus the exact eigcnvector VI,  obtained by 
using P r r ,  can be bounded by using B(1, L )  to obtain the 
bounds. 

We now  show that these bounds also bound the decom- 
position approximation. The decomposition method uses the 
submatrices P; to solve for v;: as given in (3.9). The Pf 
are exactly equal to PII  except for the diagonal entries Pi,, ~ 

which are increased to make P ;  stochastic. This observation 
can be verified by referring to (3.20) and (3.21). This clearly 
indicates that P; 2 P Z Z .  Since the Pf are stochastic P; E 
B(1, P I I ) .  Then since both P; and  PI^ E B(1, P r I ) ,  the 
bounds obtaincd by using B(1, Pzz )  bound both the exact 
and decomposition results, i.e., v"'~ 5 w * ,  V 5 v"'P. Note that 
the aggregation step involves no approximation for lumpable 
systems. 

Thus, we can find bounds to the subvectors V I  using (5.4a), 
(5.4b). We proceed as follows, by first calculating the index 
sct J(1) given by (5.2) which for NCD systems becomes 

- 

J ( I )  = {j = 1,  2,. . . n(1); 3i s.t.PI,z, > PI~I , } .  (5.6) 

As shown earlier, P I I  = ~ P I I  has no zero columns, 
hence (5.6) simplifies to J ( I )  = { j  = 1, 2 , .  . . n ( I ) } .  Thus, 
knowing J ( I )  we can write down the solution as follows: 

(5.7a) 

(5.7b) 

(5.4b) give the same hounds. 
4Typicdlly fur systems considered in this paper (5.3a), (5.3b) and (5.4a), 
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with Z ( I ) k ,  the elements of Z ( 1 )  We can thus take our new bounds as 

(5.9) 

Once we have the bounds vpf, usup, then z ~ ~ ~ / ~ ~ ~  - 
U ~ " ~ ' * " X I  from (3.13). Now one way to obtain bounds on 
the mean queue length is to simply use zinflsup instead of z* 
in (3.28a). This gives our first set of bounds: 

Z - 

IV, M 
( D ) i n f l s u p  - - CXI)iljinf/w 

I ,  (5.10a) 
1=0 i=o 

thus 

Proposition I :  Mean queue length bounds (5.13a) and 
(5.13b) are tighter than those obtained using (5.10b) and 
(5.  10c), i.e., 

E1(D)'"f 5 E*(D)'"f (5.14a) 
&(D)""P 2 E2(D)sup. (5.14b) 

Proof: We will prove only (5.14a) since (5.14b) has the 
same proof  with  min replaced by max. By definition 

Multiplying by i and summing on each side 

From a closer look at (5.10a) and by using Theorem 1 we CikE%(,,z(~)kz 5 Ciz ( I ) j ,  v j  E ~ ( 1 ) .  
can  show  that the bounds (5.10b), (5.10~) can  be improved L 

as follows. We know from Theorem 1 that if u is the left 
eigenvector of B E B(1, L) then uT can be written as the Thus, clearly, 
convex combination of  the rows of Z .  which have indices in 

k E j  

CkES/3k = 1. Multiplying by X I  and summing over 1 

For NCD systems this becomes 

with = [ , O I ~ ]  satisfying 

Pz E R:(q> x P I ,  = 1. 
& J ( I )  

The mean queue length is given by (3.28b), E ( D )  = 
X I  X I  X, ivl,. Substituting (5.1 1) we get 

Define E ( D ) l k  = X, iZ(1)k;. Thus, CIirlz* is a convex 
combination of E ( U ) I ,  for k E J ( I ) .  Hence the bounds of xi ivr, are simply 

A 

This completes the proof. 
Examples of plots of the mean queue length are shown  in 

Figs. IO and 11. Fig. 10 uses the same parameters as Fig. 7, 
with M = 60, and a: = 100 except here the mean queue length 
is plotted instead of thc mean waiting times. Both sets of upper 
and lower bounds EI(U)inf/SUP and E2(D)inflsUP are plotted. 
As expected, E2(D)1nf/SUP are clearly tighter bounds. Fig.  11 
shows results for  a larger system with 8 channels where the 
bounds used are those of (5.13a), (5.13b). 

A. Computational Requirements 

The errur bounding scheme requires the computation of 
n matrix inverses (5.8), each of size n(1) x n(1). This 
computation is of order T L  x r r ' ( 1 ) .  Hence, for Senet, the 
original problcm that was of size ( M N u ) '  has been reduced 
to N,  x M 2 .  Thus a computational reduction by a factor of N, 
for  the calculation of error bounds for the closed form solution 
given by (3.30) has been achieved. 
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Fig. 11. Queue  length  with bounds: 8(4, 4), 31 = 60, a = 100 

VI. SUMMARY AND CONCLUSIONS 

We have presented an approximation technique with er- 
ror bounds for the data performance analysis in a movable 
boundary integration scheme. The technique gives a closed 
form solution to the distribution of the Markov chain for 
the number of packets in the data queue. From this all the 
necessary performance criteria such as the mean data queue 
length and the data blocking probability can be derived. It is 
found that the approximation becomes more accurate as the 
ratio of voice holding to data holding time increases. It also 
improves as  the number of channels increases, and hence is 
particularly useful for large systems. 

Apart from giving insight into the system’s behavior, the 
main importance of the closed form solution lies in the 
fact that it can be used for optimization purposes. In addi- 
tion, since the decomposition mean queue length and data 
blocking probability approximations both appear to be upper 
bounds, Le., worst case behavior, in the low to medium 

traffic region ( p d  < p y ) ,  they can bc useful in system 
design. 

The decomposition technique can also be easily extended 
to include more classes of traffic. These could be circuit 
switched users with differing holding times and bandwidth 
requirements, such as that of vidco. A study of such systems 
with various access policies for the circuit switched traffic is 
underway and we intend to report the results in the future, 
when available. 
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