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A Decomposition Approximation for
the Analysis of Voice/Data Integration

Sayeed Ghani and Mischa Schwartz, Life Fellow, IEEE

Abstract— A closed-form decomposition approximation
for finding the data performance in voice/data queuing
systems is presented. The approximation is based on Courtois’
decomposition/aggregation techniques and is applied to Senet
hybrid multiplexing, movable boundary frame allocation
schemes. The approximation is applied to both infinite and finite
buffer systems. In the former case the approximation is valid
only in the underload region and serves as an upperbound for
the mean data queuning delay. In the finite buffer case it is valid
for the whole data traffic range and is shown to improve as
the number of channels increase, and deteriorates as the buffer
size increases. For finite buffer systems npper and lower bounds
for the decomposition approximation have also been derived.
It is found that the lower bound is tight in the underload and
low traffic region of the overload. In these same regions the
decomposition approximation serves as a tight upperbound.

I. INTRODUCTION

N THE ANALYSIS of integrated voice/data systems it

is well known that exact solutions are computationally
intractable for large systems. Hence, it is of interest to obtain
approximation techniques for the analysis of such systems.
This study presents an approximation technique which is
applicable to such systems if the holding times of the traffic
are widely different. In voice/data systems with no speech
interpolation the ratio of voice to data holding times is
typically of the order of 10 [1]. Similarly for video/voice
systems this ratio can be large. Thus such integrated systems
are suitable for a decomposition analysis.

The voice/data process is generally approximated by a
two-dimensional Markov chain whose equilibrium stationary
distribution is desired. The solution technique for such a
problem falls broadly into two categories, exact and approx-
imate techniques. Exact techniques include matrix methods
and moment generating functions. The latter approach requires
finding the roots of a polynomial within the unit circle. For
large problems this poses convergence problems since the roots
are generally close to one. Also finding roots of a polynomial
is generally an ill-conditioned problem [2], hence the approach
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should be avoided. Exact matrix techniques give rise to very
large matrices since the state space can be very large, and
hence become computationally very expensive.

Approximation techniques include the fluid-flow and dif-
fusion approximations, which have been applied to infinite
data buffer systems [1], [3]. These approximations are inher-
ently limited to the heavy traffic regions. In this paper we
propose an approximate technique based on a decomposition
technique originally developed by Simon and Ando [11]. The
method was later applied by Courtois [4] to nearly completely
decomposable matrices. The method developed by Courtois is
essentially a matrix technique, but we show that when applied
to typical voice/data integration it gives rise to closed form
solutions. This is a significant advantage over previous exact
and approximate methods mentioned above, all of which give
solutions based on numerical techniques, such as finding roots
of a polynomial or evaluating the eigenvalues and eigenvectors
of matrices.

The decomposition method essentially approximates the
steady state behavior of such systems by ‘decomposing’ them
into long and short term behavior. Thus it converts a multidi-
mensional Markov chain into a hierarchy of groups of states,
such that the interaction between the groups is small compared
to interaction within groups. Thus in obtaining the probability
distribution of the system, the short term equilibrium distri-
bution of a group is approximated by ignoring its interaction
with other groups.

In order for the decomposition approximation to be accurate,
it is necessary that each group of states should achieve
equilibrium in isolation. In integrated voice/data systems, as
we shall see later, if infinite size buffers are assumed, then this
is only true in the underload region, which we shall define later
as the region of flow-controlled data tratfic. In the overload
region, the data traffic region beyond the under load region,
one or more of the subgroups becomes unstable in isolation,
and hence the decomposition method for infinite buffers fails.

Thus for infinite data buffers the decomposition approxima-
tion is proposed as an underload approximation, a region where
other approximations such as fluid flow give zero waiting time.
The importance of the underload region stems from the fact
that delays in this region are small compared to the overload
region, where the delay is known to be proportional to «,
the ratio of voice holding time to that of data. Thus for
flow-controlled systems, this would be the desirable region
of operation.

In order for the technique to be applicable for the whole
data traffic region we consider finite data buffers, which is of
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course what real systems have. We show that in this case the
decomposition approximation is a good approximation for the
whole data traffic region, and is particularly good at very low
and very high data loads.

Section 1I presents a description of the voice/data integration
model known as the movable boundary scheme or Senet. In
Section IIT we apply the Courtois decomposition technique to
Senet, and present a closed form solution for the equilibrium
stationary distribution and data waiting time. Section IV
shows the results of Section 1II applied to larger systems and
compared to exact and simulation results. In Section V we
develop a technique for finding bounds on the decomposition
eITOT.

Il. VOICE/DATA INTEGRATION

Since the early seventy’s a great deal of research has been
undertaken for the development of various architectures for the
multiplexing of voice and data in an integrated voice/data net-
works. One of the proposed architectures for such a switch is
Senet (slotted envelope network) |5]. It is based on the concept
of a movable boundary scheme proposed by K. Kummerle of
IBM Research, Zurich, in 1974 [6]. In a voice/data network
such a multiplexor would exist at each node of the network. In
the switching scheme we present below, the general problem of
evaluating end to end voice/data performance is a very difficult
one. This is due to the dependence of data performance on the
voice traffic; and due to the node to node interdependence of
circuit switched voice traffic. Thus it becomes necessary for
the approximate solutions found for single node problems to
have the following properties: that they are easily extendible
to include more classes of traffic, such as video; and are
also extendible to multimode problems. While keeping this
eventual goal in mind, we presently restrict our analysis to
a single node, with two classes of traffic voice and data. We
show that the solution to this problem can be expressed quite
accurately in closed form, and that the technique used is easily
extendible to include more classes of traffic.

A. Senet Model and Analysis

The Senet frame structure is shown in Fig. 1. Time is
divided into equal sized frames of period T seconds, and each
frame consists of NV TDM slots, each of size b bits. Thus, each
slot represents a channel with a bit rate of b/T bits/second.
Senct employs what is known as a movable boundary frame
allocation, in which N, channels are reserved for data trans-
mission and the rest N, = N — Ny are shared between voice
and data with voice having preemptive priority over data. Data
packets preempted by voice are placed back at the head of the
data queuc. This technique can offer considerable advantage
over a fixed boundary scheme in which data is limited to Ny
channels. For the same data traffic load the movable boundary
scheme gives reduced queuing delays with no reduction in
voice performance. No good approximation techniques exist,
however, for determining Senet performance in a closed form
solution, and which may be useful for design purposes. This
is the purpose of this study.
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Frame T sec

Fig. 1. Senet frame structure.

The multiplexor is hybrid, that is voice channels are circuit
switched (with no buffering) whereas data is packet switched
with a finite buffer. For the sake of simplicity we assume that
the total number of data packets allowed in the system, i.e.,
those being served plus those in the buffer, is equal to M.!
We assume that the frame size is small compared to the packet
lengths and the duration of a circuit switched call. Voice call
and packet arrivals are Poisson at average rates of A, calls/s
and Ay packets/s, respectively. Arriving voice calls and data
packets are transmitted on individual channels at a bit rate
of b/T. The holding time of a call and the time required
to transmit a packet are assumed to be exponential with an
average of 1/p, and 1/pq s, respectively. The data and voice
utilizations, defined as py = Ay4/pq and p, = A, /1., give us
the average number of channels occupied by voice and data
traffic, respectively. Using these definitions one can in turn
define two regions of operation of the data traffic [3]. The
underload region is the one in which the average data traffic,
given by the data utilization py, is restricted to its reserved
capacity only.

Underload region: 0 < pg < Ny. 2.0

The overload region is the one in which the data load is large
enough to require, on the average, voice-dedicated channels.
For large voice holding times compared to data packet lengths
this can result in extraordinarily long data queues and hence
large data queuing delays if not limited by buffer size {3], [7].

max

Overload region: for infiniteM Ny < pg < pg
= N bl pv(l — PBV)
for finite M Ny < pg <oc. (2.2)
The maximum data utilization pJ*** corresponds to the
data load beyond which infinite data buffer systems become
unstable. At this point the data load is equal to the average
number of channels not occupied by the voice. Py is the
voice blocking probability. In much of the analysis we take
M to be finite. In some examples we assume infinite buffers.
Under the assumptions made above of Poisson arrivals and
exponential service times, and if we also assume that the voice
and data holding times are large compared to the frame period
T, then the state of the system is given by a continuous-time
two-dimensional Markov Process (V(t), D(1)) where V (i) =
number of voice calls in the system, and D(t) = number of
data packets in the system.
I'We shall henceforth use the shorthand notation N(N,.,, N;), M to denote

the movable boundary scheme. Where A is not specified it is taken fo be
infinite.
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We denote the equilibrium state probabilities by the two
dimensional vector p = [p; |, ie.,

pi,; =Pr(V(t) =i, D) = j),

i=0,1,---,N,, j=0,1,--- M. (23)

Define q(7, j; k, {} as the transition rate from state (2, j)
to (k, [). Using the arrival rate and service time parameters
defined above, the nonzero transition rates are given by

Q(Z*.]vz+1v.7)=)\'u ZZO,/N,U—I

Q(Z7]9Z—1>J)i“}‘v i:1727"'7NL'
g, j; 4, j+ 1) =2 =0, ,M~1

(2.4)

s Jﬂd .7=0a7]V_7’1
q(Z’J;Z’J_l):{(JV—Z‘)/‘Ld j>N—i- M—1.
The resulting state transition diagram for this system is

shown in Fig. 2. The equilibrium probabilities p; ; must
satisfy the global balance conditionis. These can be written
in matrix form by first mapping the two dimensional vector
p into a one dimensional vector v = [v;], by choosing some
1 : 1 mapping function

fFoG,5) =1L

(An example appears in the next section). Thus, v; = p;;, for
I = f(i, 7). The generator matrix @ = [Q, ;] for the Markov
process is then formed. The scalar elements Qj ; of Q are
given by

Q1= {’1(’1} J, m, 'n,) if k:f(i’ ) l=Fflm,n) 1+#k

(2.5)

_Zz;éka,i =k~
(2.6)

The global balance conditions are then written as
vQ =0, vli=1 2.7

where 0 and 1 are the appropriate size vectors of zeros and
ones. Our goal is now to solve (2.7) for v. Since v is a vector
whose size n is given by the number of states in the two
dimensional Markov chain (Fig. 2), n = (N, + 1)(M + 1),
and @ is a square matrix of size n X n. Hence, we have n linear
simultancous cquations to solve. Solving these exactly by say
Gaussian elimination would take O(n?®) arithmetic operations.
For narrowband T1 links N, may be about 20, whereas M
may be several hundred. For broad-band switching where we
may have a movable boundary scheme involving say voice,
data and video the number of states in the state space grows
as a product of the number of states of each class of traffic. In
addition if we have multiple nodes, the total state space again
grows as a product of each individual node state space.

Hence clearly any sort of exact technique would quickly be-
come computationally too expensive. Even numerical iterative
techniques would have the same problem, besides giving no
insight into the solution. Thus instead we exploit the structure
of the generator matrix . We assume that the ratio of the
holding times, given by the symbol «, is large

_ 1/ i
1/pa

a > 1. (2.8)
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Fig. 2. Senet state transition diagram.

This immediately indicates that for each voice state ¢, the data
states {(¢, 0), (¢, 1),---,(¢, M)}, for & = 0,---, N,, may
achieve equilibrium. In this case the probability of being in
state (i, j) is approximately given by

Pi,j R p(J11)pu(d) (2.9)
where the following shorthand notation is used: p(jli) =
Pr(D(t) = j|V(t) = i), and p,(¢) = Pr(V(¢) = 9).

The conditional probability p(ji¢) is easily evaluated in
closed form and is given by the probability of state j of a
finite M/M/N — ¢/M queue (where the last M refers to
the maximum number of data packets allowed in the system).
Similarly the exact probabilities p, (¢) can also be written down
exactly in closed form, and are given by

AL
. P ,
pv(z):i—;’/i pE/El i=0,---,N,.
T k=0

Having written down the decomposed solution following
intnitive reasons we now ask the question, how good an
approximation is (2.9)? Can we find error estimates, error
bounds, and can we improve this first order approximation? As
we shall show in this paper the answer to all these questions is
in the affirmative and lies in showing that the solution (2.9) can
also be obtained by using Courtois’ decomposition/aggregation
technique.

We will first give the Courtois Decomposition approxima-
tion in its general form in the next section, after which we
will apply it to Senet.

III. CouTols' DECOMPOSITION APPROXIMATION

In this section we briefly summarize some of the results
of the Courtois Decomposition approximation as described in
[4]. The Courtois approximation is applicable to the following
problem: Find the solution row vector v for a system of linear
equations of the form

vP=v, vl=1.

3.1
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P is a n x n stochastic matrix. Let us define matrices P
and C satisfying the following equations.?

P="P +cC (3.2)

P* =diag(P;), I=1,---,N (3.3)
with P} = [P’} ] row stochastic square matrices defined to be

of size n(I) x n(I). The elements Cr,, of C must each satisfy

ICru | <1, VI, Jand Vi, j. (3.4)

If an ¢ can be found such that

D<exl 3.5

then P is called near completely decomposable (NCD) [4].
The smallest ¢ is achieved by setting max |Cr, 5, = 1. Hence
€ then equals the largest element of the matrix [P — P™{, i.e.

e = max|Py.y. — P} ;.| 3.6

e |Pr.a, — Pf ;] (3.6)

At this point we also describe a similar notation used for
any eigenvector v of P. Let v be a vector of subvectors v

v=[v1, vz, ,Un]

(3.7
where each v; is a subvector of scalars vy,:

vr = [vg, o vr,,] I=1,---,N. (3.8)
Each P corresponds to a set of n(I) states Ay = {I;, i =
1,---,n(I)}. We call A; an aggregate state. Thus the states
¢ = 1,--+,n have been partitioned into N aggregate states
Ay, I = 1,--- N each of size n(I), such that transition
probabilities between the aggregate states are weak compared
to those within the aggregate states. Here e represents the
degree of coupling between the aggregate states. We note
here that (3.2)-(3.6) imply that P* can be constructed in
an unlimited number of ways. We are merely required to
distribute the off-diagonal block elements of P over the
nonzero diagonal block elements of P. One of these methods
which we term “diagonal folding” will be discussed later.
If P is NCD then the Decomposition method approximates
v by another vector z*, using the following decomposi-
tion/aggregation steps.’
Let v* be a vector of the form (3.7, 3.8). First the solutions
v} of the N equations
v P = v7, vil=1, I=1,---

N 3.9

are found, either numerically or in closed form. Next the
aggregate matrix G is formed. This is an N x N transition
matrix for the aggregate states. P is called lumpable if there
exists a set of constants kry, such that

Prsl=kr1,

vI,J=1,---.N (3.10)

2The following .\ is not to be confused with the one used in Section II.

*Henceforth, we use the notation * to denote the decomposition approxi-
mation.
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As we shall see later, the P matrix corresponding to Senet
systems has this property. For lumpable systems, G = [G]
can be found exactly by setting

G”:i:u I,Jj=1,---.N. GB.ay

Using the matrix G, the equilibrium state probability vector
X = [X] for the aggregate states is given by the solution of
the linear equations

XC=X, Xi=1 (3.12)

X7 is the probability of being in aggregate state I. For
lumpable systems, X represents an exact solution.

The approximate solution z* to v, £* having the form (3.7,
3.8), is given by

z; =viX;. (3.13)

Thus we have weighted the conditional distribution v* by
the probability X of being in the aggregate state I. Courtois
has shown thal (3.13) is an O(c¢) approximation to v [4].

A. Reduction in Computarional Complexity

In calculating the approximate solution (3.13) we have
reduced the original problem (3.1) into the solution of N + 1
smaller problems. N of these given by (3.9) are of size n(I)
each, and one of size N is given by (3.12). The importance
of this decomposition lies in that often the solution of these
smaller problems can be obtained in closed form, hence giving
a closed form approximation to (3.1). This is the case in the
voice/data integration considered next.

B. Courtois’ Decomposition Applied to Senet

We stated that decomposition is applicable to systems whose
solution is of the form (3.1) whereas our problem is in the
form (2.7). Hence, we must first converl the generator matrix
Q@ with solution of the form (2.7) into a transition probability
matrix P with solution of the form (3.1) such that the state
probability vector v remains unchanged. This can be done as
follows. Define

P=kQ+1 (3.14)

where k is a scalar constant satistying 0 < &k < 1/max; |Qu].

and hence P > 0. Then vP = kv@Q + vl = v lrom (2.7).

Thus, P is the desired stochastic transition probability matrix.

We show later in (3.23) that P is NCD with

1N, —1+max(p,, 1) .
€ - =

Ta pa+N+p/a ¢

The exact condition for P to be NCD, i.e., satislying (3.5),
would be for ¢y, given by (3.15), to satisfy

(3.15)

€ < 1. (3.16)

‘We can simplify condition (3.16) for typical voice/data systems
which have
0 < py < Ny,

0< pg < N. (3.17)
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Fig. 3. Discrete time probability matrix P for N(N,. Ngj. M.
If C. Decomposition
P is decomposed into groups of irreducible Markov chains
7 el . -
o= b i’\_v (3.18) whose solution is obtained independently of the others. As
1/pa N mentioned earlier, there is no unique way of forming P* from
P. Alternative methods of “folding” P into P* have been
then investigated. At present we choose “diagonal folding” which,
as we shall see, results in a closed form solution.
1N In diagonal folding, we form P* by the following “pertur-
v .
€~ ()(a N) < 1. (3.19)  bation” of P. For every row of P, collect all the nonzero

We note that (3.18) clearly follows from (2.8), and hence (3.19)
is a direct consequence of (2.8). Thus, (3.18) gives a simpler
condition than (3.16) for I? to be NCD.

Now let us look at the transition diagram of @, Fig. 2. (3.18)
implies pq NV > u,,N,,. Under average loading conditions, i.e.,
pa = O(Ng), py = O(N,), (3.18) also implies Ag > A,.
This suggests that the state transition diagram can be naturally
divided into groups .A; with A; = {(¢, 0), (¢, 1),---, (i, M)},
for i = 0,---, N, such that the interaction berween groups
(order of A,., p,) is weak compared to interaction within the
groups (order of Ay, jig).

Thus, in order to obtain an NCD matrix P having the form
(3.2)-(3.4) we choose a mapping function f such that the
elements within a group are mapped such that they are lumped
together. Thus the following lexicographic mapping is chosen:
f(i, ) = Mi + 4. The resulting P matrix is shown in Fig. 3.
From our definition of an NCD matrix (3.2}, together with the
conditions (3.17) and (3.18), it can now be seen that P2 is NCD
with thec number of subblocks N being N, + 1. The size of
cach subblock n(l) = M + 1.

Having obtained P in NCD form the Decomposition method
approximates v in the following Decomposition/Aggregation
stages described in Section II.

terms outside the diagonal block and add them to the diagonal
term. Thus,

N n(J)
P;:v; = PfJf + ZZPL-JJ-;
J-17=1
J#T
i=1,---.n(I), I=1-- N (3.20)
P; =Py, i,j=1--n(),j#i I=1-N.
3.21)
The matrix P* is shown in Fig. 4.
P — P is easily evaluated to be
Py, = Iry,
—OW LNy — D+ Iudk I=J, i=j
) Mk I=J-1, i=j
Tiok I=J+1, i=j
0 otherwise
(3.22)

for I, J=0,---,N,, 4,7 =0,---, M. Here

1 n>1
1('!1,)——’{0 el
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0 1 2 N N+t M
0 1- gk Ak 0
1 pak 1= (M4 palk Ak
2 0 sk 1= (ha + 22k
N 1 {Aa+ Nuahk Aak
N+1 Nugk 1-(da+ Nua)k
Mo dgk
M 1 - Npgk
Py
0 1 N-1 N M
0 1 gk Agk
1 pak 1= (g + pa)k
2 0 sk
Nt 1= (Ag (N~ 1)pa)k ’
N (N - Dugk 1= (g + (N = gk
M1 Aak
M 1= (N = Dpak
Py
0 1 Ny Ne+1 M
[} 1- Ak Aak
1 pak 1 (da+uadk
2 [} 2ugk
Na 1= (Ag+ Napa)k Ak
Ne+1 Napak 1— (g + Nepa)k
M—1 Agk
M 1 - Napak
P,
Fig. 4. P* matrix for N(N,, Ng), M.

Once P* is determined, € and C follow from (3.6) and (3.2).

Using (3.6) and (3.22) it is easy to show that

n

. *
= I}}i}fIPI,JJ - P,

max {(A, + (Nv — Dy )k, Nypink}
kuy [Ny — 1+ max (p,, 1)].

il

Now 0 < k& < 1/max;|Q;;|. max; |Qy;| is the maximum

rate of leaving a state ¢, and by inspection of the @
max; |Qii] < Ag + Ay + Nug. Hence,

k< 1/(Aa+ Mo+ Nyg)
L[Ny — 1+ max (p,,, 1)]
T (At A+ Nug)
1N, -1+ max(p,, 1)
a pa+N+pja

€

IA

matrix:

(3.23)

Since the matrices P} represent a one dimensional
birth—death process, the normalized equilibrium probability

vectors of (3.9) are easily found to be given by

o [Predit 0<j<N-I
I; = J .
Pr, (N—I)!(N’:I)i— v N-I<j<M

(3.24)
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where

p‘(iNfl)(l _ (pd/(N _ I))(4M7N+I+l))

fro = (1- ) - D

N-—I-1

-1
+ Zp{;/k!) I1=0,--
k=0

These are the conditional solutions p(j|) to a finite
M/M/N — I/M queue, precisely as mentioned in Section 1L

.
Ny

D. Aggregation

The solution of the decomposed Markov chains is combined
to approximate the exact solution. Since we have assumed
that voice calls have preemptive priority over data packets,
the voice process is independent of the data process. Hence,
it is easy to show that P is lumpable (see 3.11). Thus, the
(N, +1) x (N, +1) aggregate matrix G is formed using (3.11).
The matrix G is shown in Fig. 5. X, the solution to (3.12),
which represents the marginal distribution of the number of
voice calls, is again easily obtained in closed form

1 N
o
Xr="2/> ok T=0, No. (3.25)
k=0

This is precisely the form of p,(I) noted in Section II
Hence, the approximate solution z* to » (3.13) is given in
closed form as

.’I/';]:’U;jXI jZO,"'./AM,
=p(i|Dpu(1).

’=07"",N’u

(3.26)

Thus, we have shown that by choosing diagonal folding we get
the decomposed solution (2.9). We can now find the relevant
performance criteria. The waiting time, for example, is found,
using Little’s formula, to be given by

o L(_ED)__
o0 = a7 1)

Here Pgp is the decomposition approximation to the data
blocking probability Pgp. Pgp is found by summing the
probability the data buffer is full over all the voice states, i.e.,
Pip = Z?]:“O %, and pa(1 — Pgp) is the data throughput.
Of course for infinite M, Pfp is zero. The term E*(D)
represents the approximate mean number of packets in the
system, and is given by

N, M
E*(D)=Y_> iz},

(327

(3.28a)

I=0%=0
N, M

=Y "Xy i, (3.28b)
I=0 =0
N,

= ZX,E*(D,). (3.28¢)
I=0
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0 1 2
0 1- Ak Ak
1 [ S PP WYY Ak
2 2k 1= (O 4200k ...
No—1
N,

Fig. 5. G matrix for N(N,, Ny), M.

Here we have used (3.26), and defined E*(Dj)
EX(DV() = 1), e,

M
E*(Dp) = i},

i=0
E*(Dj) can be found by substituting (3.24) in (3.29). After
some simplification this gives (3.30) shown below. For infinite
buffer size, i.e., M — oo, with pg < N —N,,, E*(Dy) reduces
to (3.31) below. Results using these approximations appear

in Section IV.

(3.29)

IV. RESULTS

We now compare the decomposition results with exact
and simulation resuits for various systems. The exact results
were obtained, unless otherwise specified, by matrix iteration
methods until sufficient accuracy was achieved in evaluating v.

We first consider an infinite data buffer system 2(1, 1) using
the notation N (N,, Ny) introduced in section 2. Fig. 6 shows
the decomposition results obtained with (3.27), (3.28¢c) and
(3.31) for the underload region, along with exact results for
a=1.1,10,10% 103 p, = 0.5 and 1/puz = 10 ms are kept
constant. Hence, 1/p, = 11, 102, 103, 10* ms, respectively,

N, -2 Ny -1 N,
(N = Dok 1= (A +(Ny = D)k Ak
Nop b 1= Nypk

2

10 R — T

Schweniz Underload
. Decomposition
g FixedBounday
=~ * Exact, alpha=1.1
w || e
S 4 x 0
3 E © B, =it
% ‘210! |- |+ Exact, alpha=1000
2=
)
[
8
o
=
i
[T S i N R 1 |
0.00 020 040 0.60 0.80 1.00

Data Traffic Utilization, p 4

Fig. 6. Underload packet waiting time: 2(1, 1).

for the four curves. We note that the data waiting times
increase as « increases. This is as expected since voice calls
preempt data packets on the IV, shared channels and the longer
the holding time of voice calls the longer these data packets
are delayed.

/'I;v_fﬂ
E*(D[) = PIo m

M—N+T+1 M-—N+I
1—(1—&7) —(M*N+I+1)(1—v%) (1-#@—,)
2
NV -0(1-3)
M-N+I
pN-T+1 [1 - (fo } Nk
+ + d I=0,---,N,. (3.30)
N 1) [ ;(k—l)!
N-TI+1 NI k
* Pd 1 1 1 Pa
E*(Dy) = 4 N . B
N -1)! (N—I)(l_%)Q 1- 25 kz:l(k—n!
NoT N-I-1 !
P + 3 ok I=0,-,N,. (331)

(-

H47) (V- D

k=0
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Fig. 7. Packet waiting time: 2(1, 1), M = 20. 30, 60.

Since the decomposition approximation assumes the voice
holding times are long enough for the data process to achieve
complete equilibrium in each voice state, it effectively as-
sumes « — oo. We thus find that for infinite buffers the
decomposition approximation serves as an upper bound. This
is apparent in Fig. 6. As &« — oc the exact curves approach
the decomposition curves from below.

For comparison purposes we have plotted the fixed bound-
ary curve which does not allow data packets to use any of the
N, voice channels. Clearly the movable boundary results are
superior to those of fixed boundary results. The decomposition
results are also clearly far tighter an upperbound than the fixed
boundary result.

In the overload region for the infinite data buffer case the
assumption of packet queue equilibrium in any given voice
state, required to obtain approximation (2.9) or (3.26), is no
longer valid. Thus in Fig. 6 as p;, — N — N, = Ng, the
boundary between the underload and overload regions, the
decomposition approximation is shown going to infinity. The
exact curve is still valid, however, going out of bound only
at the point py = pJ'** = 1.6666 (this point is not shown in
Fig. 6).

We also plot for comparison purposes in Fig. 6 an underload
approximation proposed in [3]. We note that this serves as a
lower bound, i.e., is approached as & — 1 from above.

We now consider finite data buffer systems. Fig. 7 shows
three sets of curves for M = 20, 30, 60. For each set we
plot the decomposition results along with exact curves for
102, 10%, 10%. Again p, = 0.5, and 1/pg = 10
ms. As before, as o — o0, the exact curves approach the
decomposition curves.

Figs. 8 and 9 show that the results grow more accurate
for larger finite data buffer systems, 4(2, 2), 60 and 50(25,
25), 100. 1/p4 = 10 ms for all the figures. p, = 0.7808
for Fig. 8, which makes the normalized maximum number
of channels available for data pJ**/N, the same (1.6666)
as in Figs. 6 and 7. Fig. 8 shows that as we go to larger
systems, from 2(1, 1) to 4(2, 2) for M and « fixed, the
error in the approximation decreases. But for the same number

xx =
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Fig. 8. Packet waiting time: 4(,2 2), M = 20, 30, 60.
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Fig. 9. Packet queue length: 50(25, 25), M = 100, a = 100.

of channels, as M increases, the error in the approximation
increases. Fig. 9 shows results for a realistic sized system
with 50 channels. p, = 17.25 has been chosen as the
voice utilization to make the voice blocking probability small:
Pgy = 1.78%. This gives p7** = 33.06 channels for data.
The decomposition results are compared to simulation results
with 95% confidence interval. Clearly, the approximation is
very accurate, as expected. For comparison purposes the mean
delay for a fixed boundary scheme is also plotted.

V. ERROR BOUNDS

We had mentioned in Section 1l that the decomposition
approximation is an O(¢) approximation, with a bound on ¢
given by (3.15). The constant associated with the error could
be large, hence this result does not guarantee a small error
even if € is small. Hence what we need in order to guarantee
a small error is a tight error bound. This is what we shall deal
with here.
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In this section we will use a technique different from
Courtois’ Decomposition approximation described in Sec-
tion III, called bounded aggregation, to obtain two new
approximations, a lower bound and an upper bound to the
exact mean queue length. It will be shown that these two
approximations provide a lower and upper bound to the
decomposition approximation. Hence they can be used to
obtain error bounds for the decomposition approximation. The
bounded aggregation method was used by Courtois in [8] to
obtain bounds to the equilibrium probability distribution vector
v. We will first obtain bounds to the mean queue length using
v as obtained in [8], and then secondly using an improved
method also based on bounded aggregation. It will be shown
that the second method provides tighter bounds than the first.
We first briefly summarize the relevant results as obtained in
[81.

Define B(1, L) to be the set of all » X n nonnegative
irreducible matrices B having spectral radius p(B) less than
or equal to 1, and a lower bound n X n matrix L:

B(l, L) = {B e R

nXxn

:p(B)<1,0<L<B,
B irreducible}.  (5.1)
We also require that p(L) < 1.

It is shown in [8] that it is possible to easily calculate a
polyhedron P that contains the left-positive eigenvector of
any matrix B € B(1, L). Having obtained such a polyhedron,
it is then possible to bound the left-positive eigenvector of all
matrices B € B(1, L). We summarize these results briefly as
follows. Define the normalized inverse, Z = (I — L),
where I is the identity matrix and Y is a normalization
diagonal matrix diag (£) = (I—L)~11. Define the polyhedron
P as the convex combination of the rows of the matrix
Z:P={p"2%2 Bent, gr1 = 1}. We now state without
proof the following theorem from [8].

Theorem I: The positive-left eigenvector of a matrix B €
B(A, L), belongs to the polyhedron the vertex of which are
the rows of the matrix Z, which have indices in the set

j:{]zl, 2,---,mn; J8 S.t.Bij >Li_}'}, lfp(B)Z)\
(5.2)

The next theorem in [8] gives the two approximations vi"f,
v;"® to eigenvector v = [v;]; here vi*f < w; < P, for
i = 1,---,n. It states that

inf __ . N1 .
™ = max mkelg(Zk,), 1 j;mké;((Zk]) (5.3a)
$UP — mi m )l — mi L
) in kea}((Z’”)’ 1 E kEl}](Zk]) (5.3b)
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Zy; are the elements of Z. In this paper we simplify (5.3a)
and (5.3b), by using

(5.4a)
(5.4b)

inf .
o = min{Zy;
T kEJ( l)

We have found that this provides an occasionally less tight
but much more simply calculated bound.*

We now apply the bounded aggregation method to nearly
completely decomposable (NCD) systems, discussed previ-
ously in Section III. We first describe a method of obtaining
exact results called exact aggregation as given in [8].

Consider a stochastic P matrix of the form given in (3.2)
with the left eigenvector v of the form (3.7), (3.8). Define a
stochastic block diagonal matrix P of the form (3.3), i.e.,

9P =9y, v1=1 I=1,---,N (5.5)
such that vy = wr/vsl. For example, Pr; is a stochastic
matrix whose left eigenvector ¥y is parallel to the exact
subvector vy. Using the method of exact aggregation described

briefly in [8], we can decompose the transition probability
matrix P as follows:

P Ep

Fir G

here E;; and Fyy are the matrices of transition probabilities
between Pj; and the remaining part of the system Gyr. Thus
we have F]] = Pyy +E11(I—G11)71F]]. We define PU as
13[[ = ?11 _PII = E[](I—G“)le[I. From (3‘3) we can
casily see that no row of E; or column of Fyy is completely
null. Since P is irreducible (I —Gy7)~! is nonnegative. Hence
Prrisa nonnegative matrix with no zero columns. Thus
Pyr > Pyy. Since the Py; are stochastic, p(P;;) = 1. Hence,
Prr € B(1, Pyp). Thus the exact eigenvector @y, obtained by
using P;;, can be bounded by using B(1, L) to obtain the
bounds.

We now show that these bounds also bound the decom-
position approximation. The decomposition method uses the
submatrices P} to solve for v}, as given in (3.9). The P}
are exactly equal to Py except for the diagonal entries P7,_,
which are increased to make P7 stochastic. This observation
can be verified by referring to (3.20) and (3.21). This clearly
indicates that P; > Pjj. Since the P} are stochastic P} €
B(1, Prr). Then since both P} and Pr; € B(1, Pyy), the
bounds obtained by using B(1, Prr) bound both the exact
and decomposition Tesults, i.e., ' < v*, 7 < v™"'P. Note that
the aggregation step involves no approximation for lumpable
systems.

Thus, we can find bounds to the subvectors v using (5.4a),
(5.4b). We proceed as follows, by first calculating the index
set J(I) given by (5.2) which for NCD systems becomes

JIy={j=1,2,...n(I); 3 stPrg > Pry}. (5.6)

As shown earlier, P;; = Py — Py; has no zero columns,
hence (5.6) simplifies to J(I) = {j =1, 2,...n(I)}. Thus,
knowing .7(I) we can write down the solution as follows:

oanf : 3
v = kg}}l&)(Z(I)kl) (5.72)
sup = max (Z(1)x;) (5.7b)

v, keTD)

“Typically for systems considered in this paper (5.3a), (5.3b) and (5.4a),
(5.4b) give the same bounds.
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with Z (1), the elements of Z({[I)

Z(I) = 2 “YI-P)t (5.8)
1
diag (Z) ={I-Pr) 1 (5.9
I
inf/sup —

Once we have the bounds v\, v7"P, then

viI"f/ P X7 from (3.13). Now one way to obtain bounds on
the mean queue length is to simply use £'"f/5%P ingtead of z*
in (3.28a). This gives our first set of bounds:

N, M
1o (D)inf/sup — ZX[ZiU}?f/SuP
I=0 =0

(5.10a)

thus

(D)t = ZX,ZZ min Z(Dyi)  (5.10b)

E1(D)™ = iX,Zz max Z(Dwi).  (5.10¢)

From a closer look at (5.10a) and by using Theorem 1 we
can show that the bounds (5.10b), (5.10c) can be improved
as follows. We know from Theorem 1 that if v is the left
eigenvector of B € B(1, L) then »7 can be written as the
convex combination of the rows of Z, which have indices in

J, ie,
v; = Zﬁkai for some 8 = [B¢] € KT,
keJ
ZregPk =1

For NCD systems this becomes

> Bz,

keJg(I)

(5.11)

with B; = [81,] satisfying

+
Bre R

Z fr, =1

keJg(I)

The mean queue length is given by (3.28b), E(D) =
3 XY, tur,. Substituting (5.11) we get

ZX;Z > B Z(I

i keJ(I)

:ZX] >3 8. iZ(D

I kegn i

(5.12)

Define E(D)j, 2 > i tZ(I);. Thus, 3. 4v, is a convex
combination of E{D);, for k € J(I). Hence the bounds of
>, tvr, are simply

kg}}?] E(D)Ik

and ax E(D)lk

keJ(I)
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We can thus take our new bounds as
N, M
inf = . . 5.13
E.(D) ZXIkgl;nI <ZZZ(I)M) ( a)
Ey(D)P = ZX, max (Zw ) (5.13b)

Proposition 1: Mean queue length bounds (5.13a) and
(5.13b) are tighter than those obtained using (5.10b) and
(5.10c), ie.,

El(D)inf § E2<D)inf
I (D)SUP > Ez(D)Sup.

(5.14a)
(5.14b)

Proof: We will prove only (5.14a) since (5.14b) has the
same proof with min replaced by max. By definition

mln Z(I)kl < Z)j;

keT(

Vi e J(I).
Multiplying by ¢ and summing on each side

; 2D < SiZ();: v
szeggg(]) Ik ZZ )i VieJ).

Thus, clearly,

Zlkénm Z{D: < rnln (ZZZ(I)P).

Multiplying by X and summing over I

N, M
ZX]ZZ mln (Z(Dw:) < ZX[ mln (ZZZ(I);”>
i=0 i=0

This completes the proof.

Examples of plots of the mean qucue length are shown in
Figs. 10 and 11. Fig. 10 uses the same parameters as Fig. 7,
with M = 60, and o = 100 except here the mean queue length
is plotted instead of the mean waiting times. Both sets of upper
and lower bounds F, (D)®!/suP and E,(D)m{/5% are plotted.
As expected, Eo(D)™/5u gre clearly tighter bounds. Fig. 11
shows results for a larger system with 8 channels where the
bounds used are those of (5.13a), (5.13b).

A. Computational Requirements

The error bounding scheme requires the computation of
n matrix inverses (5.8), each of size n(I) x n(J). This
computation is of order n x n2(I). Hence, for Senet, the
original problem that was of size (M N,)? has been reduced
to N, x M2. Thus a computational reduction by a factor of N,
for the calculation of error bounds for the closed form solution
given by (3.30) has been achieved.
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VI. SUMMARY AND CONCLUSIONS

We have presented an approximation technique with er-
ror bounds for the data performance analysis in a movable
boundary integration scheme. The technique gives a closed
form solution to the distribution of the Markov chain for
the number of packets in the data queue. From this all the
necessary performance criteria such as the mean data queue
length and the data blocking probability can be derived. It is
found that the approximation becomes more accurate as the
ratio of voice holding to data holding time increases. It also
improves as the number of channels increases, and hence is
particularly useful for large systems.

Apart from giving insight into the system’s behavior, the
main importance of the closed form solution lies in the
fact that it can be used for optimization purposes. In addi-
tion, since the decomposition mean queue length and data
blocking probability approximations both appear to be upper
bounds, i.., worst case behavior, in the low to medium
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max

traffic region (ps < pj
design.

The decomposition technique can also be easily extended
lo include more classes of traffic. These could be circuit
switched users with differing holding times and bandwidth
requirements, such as that of video. A study of such systems
with various access policies for the circuit switched traffic is
underway and we intend to report the results in the future,
when available.

), they can be useful in system
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